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Background: Keloids are characterized by excess collagen deposition within the der-
mis. Although the exact cause of the potentially overactive fibroblasts has yet to be elu-
cidated, many etiological possibilities have been suggested. As fibroblasts originating
from keloids appear to have an increased migration and proliferation rate, cell-signaling
studies examining these factors may offer an opportunity to further our understanding
of the pathogenesis of this disease. One of such cell-signaling messengers is the enzyme
Ras-related C3 botulinum toxin substrate (RAC), which has never been investigated in
keloid scars. Objective: This study explores the role of RAC activity in keloid disease.
Method: Primary fibroblast cell lines were established from the margin of keloid (KF)
scars as well as from the surrounding normal tissue (NF) from one anatomical site of
the same patient. Migration and proliferation assays were performed, comparing match-
ing NFs and KFs, and after cell lysis, RAC activity was assessed. Results: Comparing
fibroblasts from 3 different patients, KFs migrated (P < .05) and proliferated (P < .05)
faster than NFs. The activity levels of RAC were increased in KFs compared with NFs.
Conclusion: KFs migrate and proliferate faster than NFs. RAC activity increases in KFs
when compared with NFs. Inhibition of RAC could lead to a new therapeutic approach.

Keloid scars (KS) are benign fibroproliferative growths believed to result from an aber-
rant scarring process following trauma to the dermis. Trauma as minute as a vaccination
injection is recognized as potentially triggering a KS. In contrast to hypertrophic scars, KSs
extend beyond the margins of the wound.1–3 Keloid scars usually do not regress sponta-
neously and may potentially reach masses of nearly 2 kg.4 Keloid scars may not manifest
themselves until several years after the initial injury. The scar is generally located on the
shoulders, chest, upper back, neck, or earlobes. It may, nevertheless, occur at any other
anatomical site. Patients often present with severe pain and pruritus. Their sheer size may
lead to psychological distress and mechanical impairment of movement. Current options
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for treatment involve local corticosteroid injections, surgery, radiation, or pressure therapy.
Independent of the method used, recurrence rate has been shown to be around 50% to 70%.5

The pruritus and discomfort is often maximal over the margin of the KS. Clinically,
this area often appears inflamed, and it is believed that it is where the expansion into the
normal surrounding tissue takes place. Indeed, the margin of a KS was previously described
as the “proliferative” area.6 Furthermore, the overall gene activity was recently found to be
increased in the margin of a KS (unpublished data, July 2007). Keloid scars are characterized
by excess collagen accumulation and, as such, cell signaling of fibroblasts originating from
the margin of the keloid may play a major role in the pathogenesis. Interestingly, fibroblasts
from different anatomical sites are heterogeneous7 and display variable gene transcription
depending on their location. Studies comparing fibroblast cell-signaling activities should,
therefore, involve anatomically adjacent samples.

Ras-related C3 botulinum toxin substrate (RAC) is a guanosine triphosphate hydrolase
(GTPase) that acts as a switch in the cell-signaling cascade.8 When a GTPase is bound to
GDP, it is inactive. Binding of GTP triggers an alosteric change by which the physical shape
and activity of the GTPase is altered and only then can the latter bind to and activate an
effector. The rate of binding to GTP or GDP is controlled by GTPase-activating proteins
(GAPs) and guanine nucleotide exchange factors (GEFs). Guanine nucleotide exchange
factors facilitate the binding of GTP to the GTPase, hence activating it. Conversely, GAPs
accelerate the hydrolysis of the bound GTP to form GDP, inactivating the GTPase.

The enzyme RAC has been shown to be involved in the control of the cell migration
behavior9 and proliferation10 of fibroblasts. Nevertheless, no studies have investigated the
activity levels of RAC in KFs. As the margin of a KS has been described as the area of
high proliferation, it is of interest to investigate the activity of an enzyme controlling cell
proliferation and migration in this location.

METHODS

Tissue samples

Patients that were to undergo the routine extralesional resection of KS were asked for
consent to have the keloid tissue used for this project. The ethical approval was obtained
from the local hospital and the research institute. Each scar was resected with a wide
margin of unaffected tissue surrounding the scar. The unaffected tissue acted as control.
After resection, the samples were divided into 2 different subgroups: tissue from the margin
of the scar and from normal skin beyond the margin of the tumor. Figure 1 is a schematic
representation of the extralesional excision. Fibroblasts obtained from the control tissue
of the surrounding normal tissue are called normal fibroblasts (NF). The fibroblasts from
the margin of the scar were entitled KF. The material was anonymized and transported
to the Paterson Institute of Cancer Research. All scars were spreading beyond the margin
of the initial wound and, as such, were clinically identified as KSs. All 3 samples were from
patients of Afro-Caribbean descent. The first keloid tissue sample (KS1) was located on
the scalp of a 36-year-old man. The second keloid sample (KS2) was located on the ear
of a 33-year-old woman. The third sample (KS3) was resected from above the scapula of
a 37-year-old woman. No previous surgery or adjuvant treatment had been performed on
these scars.
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Figure 1. Schematic representation of the extralesional excision. Fibrob-
lasts from the margin of the scar are entitled KF, and fibroblasts from the
normal surrounding tissue, NF.

Cell culture

The samples were washed with phosphate-buffered saline (PBS) containing amphotericin
solution B (Gibco, UK) and 1% penicillin/streptomycin (P/S) (Invitrogen, UK) mix for
15 minutes. The tissue was digested with 0.1% dispase (Becton Dickinson, UK) and neu-
tralized with Dulbecco’s Modified Eagle’s Medium (DMEM) (Gibco, UK) plus 10% fetal
bovine serum (FBS) (Gibco, UK) and 1% P/S. The epidermis and dermis were carefully
separated using forceps. The dermis was diced and incubated with 0.5% collagenase type I
(Lorne laboratories, UK). After filtration, the collagenase was neutralized and resuspended
in 5 mL DMEM + 10% FBS + 1% P/S. The fibroblasts were grown in a 25-cm2 cell-
culture flask (Cornig, UK) at 37◦C and 5% CO2. The medium was changed every 3 days,
and when the cells reached 90% to 100% confluence, they were passaged with 0.05% trypsin
(Invitrogen, UK).

Migration assay

The cell lines were plated on 6-well plates and grown to 100% confluent monolayer. When
100% confluence was reached, P1000 and P200 pipette tips were used to create a vertical
and a horizontal scratch, respectively. Using a light microscope, pictures were taken from
the same injury site at regular interval over the following 42 hours. The distance between
the margins of the scratch was measured at constant magnification. The data was analyzed
using the Student t test.

Proliferation assay

Approximately 2 × 104 cells of each cell line were plated on 3 wells of 7 separate 6-well
plates. Each 24 hours, one of these plates was fixed: The medium was washed off and
well rinsed twice with PBS. The cells were then fixed with 4% formaldehyde in PBS for
15 minutes, followed by 2 washes with PBS and stored at 4◦C in 2 mL of PBS with 0.1%
sodium azide. When all wells were fixed, the plates were washed with PBS and stained with
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0.2% crystal violet for 30 minutes. The fixed dry crystal violet of each well was dissolved,
the absorbance of each sample was measured, and the data was analyzed using the Student
t test.

RAC activity assay

The cell lines were grown on 10-cm plates to about 80% confluence. The RAC activity assay
protocol previously described by Sander et al11 was followed. The Cdc42/RAC interactive
binding peptide (CRIB) used was prepared as indicated by Price et al.12 The cells were
manually lysed and resuspended in the CRIB solution. Total RAC concentration was ob-
tained by directly performing a Western blot on the supernatant from cell lysis. Passing the
remainder of the supernatant through CRIB-specific Streptavidin-agarose (Sigma-Aldrich,
UK) beads allowed the purification of the lysate by binding only GTP-bound RAC. The
CRIB/GTP-bound RAC was resuspended, and the Western blot of this lysate represents the
amount of active RAC (GTP-bound RAC).

Western blot

Between 20 and 50 μg of protein was loaded into each lane. Nu-Page 4–12% Bis-Tris
(Invitrogen, UK) gels were used for RAC assays. The gels were run under reducing condi-
tions at 200 V for 25 minutes. The proteins from the gel were transferred onto a Millipore
Immobilion-P polyvinylidene difluoride membrane (Billerica, MA, USA) at 30 V for
2 hours. After transfer, the membrane was blocked in 5% dry skimmed milk in Tween-
PBS for 1 hour. Primary anti-RAC (BD Transduction Laboratories, USA) antibodies were
used at 1:1000 dilution. After 1-hour incubation, the membrane was washed 3 times with
Tween-PBS for 10 minutes. The secondary antimouse antibody (GE healthcare, USA) con-
jugated with horseradish peroxidase was used at 1:2500 dilution. Blots were visualized on
chemiluminescence films by using Western Lightning Chemiluminescence Reagent Plus.

RESULTS

Migration

Fibroblast cell cultures were successfully established, and lines of passages 3 to 8 were
used. Only cell lines originating from the same patient and having similar passages were
compared. As the experiments were run in triplicates, experiments KS1 were performed
with passages 4, 5, and 6; KS2 with passages 3, 4, and 5; and KS3 with passages 5,7, and 8.
Figure 2 (a, b and c) shows the distance migrated by fibroblasts across the created gaps. The
most significant difference in migration was observed after 34 hours when all 3 samples
showed a significant increase in the migration of KFs when compared with NFs (P < .05).
This measured increased migration rate is slowed after 34 hours as cells migrating from
both edges of the gap reached each other.
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Figure 2. Fibroblast migration. The distance migrated
across a gap of cells created by a pipette tip on a fully con-
fluent cell culture. KS1, KS2, and KS3, respectively, show a
significant higher migration rate after 34 hours in KFs than
in NFs. After 42 hours, the difference in migration is non-
significant, as the gap was crossed.
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Figure 3. Absorbance of stained fibroblasts. Example of daily averages of absorbance read-
ings (n = 3) of stained fixed-cell cultures. As the absorbance is directly related to the amount
of cells in each well, the total number of cells present is proportional to the absorbance.
Day 1 shows similar absorbance, proving that the amount of cells plated is similar be-
tween the 2 groups. On day 4, the proliferation is maximal and the KF rate of proliferation
slows down compared with wild type (WT) because confluence is reached. Fibroblasts from
the margin of the keloid proliferate at a faster rate than fibroblasts from the unaffected
skin.

Proliferation

Proliferation rates represent the change in number of cells over a given period of time.
By fixing and staining cells at equal intervals, the stain intensity is proportional to the
amount of cells present. The absorbance-of-stained-cells measurements are reported in
Figure 3. On day 1, P > .05, suggesting that the amount of cells plated are similar in
both NF and KF samples. From day 2 to day 4, keloid absorbance increased at a much
higher rate (P < .05). On day 4, the difference in growth was maximal. The difference in
rate decreased between day 4 and day 7, and this is likely due to the wells reaching cell
saturation. On day 7, near maximum confluence was reached, and the proliferation rate
was not statistically different between the samples (P > .05). On day 4, KFs demonstrate a
36% higher proliferation than NFs (P < .05). This data confirmed that fibroblasts obtained
from KSs proliferate at higher rates than those obtained from normal skin from the same
patient.
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Figure 4. Ras-related C3 botulinum toxin substrate (RAC) activity Western blot. RAC activity of
fibroblasts originating from normal tissue (WT) and from the margin of the keloid tissues (Margin)
is depicted on these representative Western blots. Cell sample KS1 was located on the scalp of
a 36-year-old man. KS2 was located on the ear of a 33-year-old woman. KS3 was resected from
above the scapula of a 37-year-old woman. The Western blot bands were quantified using SynGene
Gene Tools program. The intensity of each band was measured, and the ratio of RAC activity/RAC
total was calculated to compare the relative activity in each sample. Fibroblasts originating from
keloid margins show a higher RAC activity than fibroblasts from the normal surrounding skin
(WT).

RAC activity

Figure 4 shows representative examples of results obtained from the Western blot for RAC
activity and total concentration. A clear increase in RAC activity from the fibroblasts from
the margin of the KS is observed. This finding of increased RAC activity has been reproduced
in all assays. To better compare the activity between NF and KF, the SynGene Gene Tools
program has been used to measure the intensity of each band. To best compare the activity
of RAC between NF and KF, the ratio of active RAC to total RAC has been calculated. This
shows that RAC activity is almost 3 times higher in KFs than in NFs.

172



WITT ET AL.

DISCUSSION

No previous studies have been published on RAC-activity levels in keloids. In this study, the
assays showed an increase in RAC activity in KFs compared with that in NFs. By comparing
samples from KSs and their matching control within similar passages, the authors believe
that errors due to uncontrolled variability are minimized. The cell migration and proliferation
assays show a clear difference between fibroblasts originating from KSs and the surrounding
normal skin. Keloid fibroblasts proliferate and migrate faster than NFs. With P < .05, these
results show strong evidence of a significant difference. Although results indicate a higher
migration rate in KFs than that in NFs, it is important to note that migration assay results are
often a combination of absolute cell migration and proliferation. The migration assays still
provide strong data for a higher migration, as the difference of proliferation over a period
of 34 hours is minimal. This interaction could nevertheless be reduced in future assays by
using anti-proliferative agents (ie, mitomycin C).

The small sample size intrinsically creates uncertainties about statistical significance,
although each sample was analyzed in a triplicate manner. Furthermore, observing an in-
creased RAC activity across 3 different keloid samples is highly suggestive of a divergence.
The enzyme RAC has been linked to several signaling cascades: as a downstream effector
of the platelet-derived growth factor (PDGF) receptor as well as a downstream effector
of the GTPase Ras. Therefore, any of these upstream factors could be a cause of an in-
crease in RAC. The upstream factor overactivity could be due to intrinsic cell-signaling
upregulation (constitutively active PDGF receptor), or due to an increase in external stim-
ulus (eg, excess PDGF secretion by overlying keratinocytes). As previously described,
GTPase activity is controlled by GAPs and GEFs. Upregulation or downregulation of
GEFs would also lead to an increased activity of RAC. Whether this increase is a con-
sequence of an intrinsic (fibroblasts) or an extrinsic (keratinocyte) trigger warrants future
investigations.

This study showed a difference in migration and proliferation between KFs and NFs
in the absence of overlying keloid keratinocytes (KKs). Previous observations13 indicate
that KKs promote higher fibroblast migration and proliferation rates. Whereas this study
does not contradict previous findings of KK interaction with KFs and NFs, it indicates that
an underlying difference between NFs and KFs must exist in the absence of KKs. This ob-
servation would suggest that the initial trigger for keloid development could originate from
within the fibroblasts. The RAC pathway could be investigated in matching keratinocytes,
and in cocultures of fibroblasts and keratinocytes. It would be interesting to assess migra-
tion and proliferation in vitro in the presence of RAC inhibitors. Furthermore, activities of
known GEFs and GAPs affecting RAC could be assessed to determine potential causes of
the increased RAC activity.

Although the underlying molecular pathogenesis of keloid disease still remains un-
known, this study shows for the first time that RAC activity is increased in fibroblasts
originating from the margin of KSs. It can, therefore, be hypothesized that RAC is linked
to the higher migration and proliferation of KFs. Which role this enzyme plays in the
pathogenesis remains difficult to determine. Whether the increase in RAC activity is at the
origin of the disease or whether it is a consequence of a different aberrant pathway is to be
elucidated.
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The margin of the KSs is a highly active area. This study reveals that the enzyme RAC
has a higher activity in fibroblasts from the margin of the keloid when compared with the
surrounding tissue. Furthermore, the fibroblasts from the margin migrated and proliferated
faster than the normal tissue. The RAC has been shown to influence cell migration and
proliferation rates, and as such, this study suggests that an increase in RAC activity in the
margin of the KS might play a role in this proliferative wound. Further research into this
field will yield a better understanding and potential management options for this benign,
yet psychologically distressing, condition.

Acknowledgments

The authors thank Mr G White from the Paterson Institute for Cancer Research for the
support and advice given.

REFERENCES

1. Bayat A, McGrouther DA, Ferguson MW. Skin scarring. BMJ. 2003;326(7380):88–92.

2. Alster TS, Tanzi EL. Hypertrophic scars and keloids: etiology and management. Am J Clin Dermatol.
2003;4(4):235–43.

3. Jagadeesan J, Bayat A. Transforming growth factor beta (TGFbeta) and keloid disease. Int J Surg.
2007;5(4):278–85.

4. Prado AS, Fontbona M. A 1.8 kg keloid on the arm. Plast Reconstr Surg. 2006;117:335–36.

5. Satish L, Lyons-Weiler J, Hebda PA, et al. Gene expression patterns in isolated keloid fibroblasts. Wound
Rep Regen. 2006;16:463–70.

6. Bao W, Wang C, Zhu H. [Histomorphology research of keloid in different regions]. Zhonghua Zheng Xing
Shao Shang Wai Ke Za Zhi. 1995;11(5):368–70.

7. Chang HY, Chi JT, Dudoit S, et al. Diversity, topographic differentiation, and positional memory in human

fibroblasts. Proc Natl Acad Sci USA. 2002;99(20):12877–82.

8. Malliri A, Collard JG. Role of Rho-family proteins in cell adhesion and cancer. Curr Opin Cell Biol.
2003;15(5):583–9.

9. Evers EE, Zondag GC, Malliri A, et al. Rho family proteins in cell adhesion and cell migration. Eur J
Cancer. 2000;36(10):1269–74.

10. Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.

11. Sander EE, van Delft S, ten Klooster JP, et al. Matrix-dependent Tiam1/Rac signaling in epithelial cells

promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J Cell
Biol. 1998;143(5):1385–98.

12. Price LS, Langeslag M, Ten Klooster JP, Hordijk PL, Jalink K, Collard JG. Calcium signaling regulates

translocation and activation of RAC. J Biol Chem. 2003;278(41):39413–21.

13. Lim IJ, Phan TT, Bay BH, et al. Fibroblasts cocultured with keloid keratinocytes: normal fibroblasts secrete

collagen in a keloidlike manner. Am J Physiol Cell Physiol. 2002;283(1):C212–C22.

174


